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1 General adaptive shrinkage

1.1 Introduction

From the previous sections, we see that the adaptive shrinkage (ash) methods

can be extended to deal with data from various distributions and hence used in

gene expression analysis. The normal ash started from observations with normal

likelihood. For variance shrinkage problems, we developed models for gamma (chi-

squared) distributed observed variances. In RNA-seq applications, the student t

likelihood was used in ash to deal with the small sample size issues. The key idea of

ash and the above extensions is the use of unimodal prior assumption (UA), which

is highly adaptive to data and sensible in many contexts (not limited to genomics

studies). Hence, apart from data with normal, gamma and t likelihood, it is natural

for us to explore potential adaptive shrinkage approaches for generic data.

In practice, we typically use a finite mixture of uniforms to approximate any
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unimodal prior. Fortunately, the convolution between a unimodal distribution and

general likelihood is generally straightforward using existing software. Here we ex-

ploit this to develop a general ash framework that can be applied to many commonly

encountered likelihoods (binomial, Poisson, etc.).

1.2 Methods

1.2.1 Models

Suppose we observe Yj (j = 1, ..., J), which is a random variable with likelihood

φj(θj) := p(Yj|θj), and the parameter of our interest is θj. Our goal is to make

inference (hypothesis testing, estimation) on θj. Under the ash [3] framework, we

use a Bayesian model to borrow information across the observations and use the

posterior distribution to estimate or test θj.

We assume that after some transformation h(·), the true parameters θj come from

a common unimodal prior g(·):

h(θj) ∼ g(·), (1)

where h(·) is the link function. We assume h is a strictly monotone increasing

function.

1.2.2 Estimate prior distribution g

As in Stephens [3], we use a mixture of uniform distributions to approximate g:

g ∼
K∑
k=1

ZkU [ak, bk], (2)
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where (Z1, ..., ZK) are latent binary indicators for mixture components following

multinomial distribution with n = 1 and P (Zk = 1) = πk, U [ak, bk] denotes a

uniform random variable on [ak, bk]. Given a fixed grid of ak and bk, we use the

empirical Bayes method to estimate the mixture proportion π. To do this we first

compute the matrix L = (Ljk) where each entry Ljk is the likelihood of θj for the

k’th prior component:

Ljk := p(Yj|Zjk = 1) (3)

=

∫
p(Yj|θj)p(θj|Zjk = 1)dθj (4)

=
1

bk − ak

∫ h−1(bk)

h−1(ak)

φj(θj)|h′(θj)|dθj, (5)

where h′ is the derivative of h. If the mixture component is a point mass, i.e. ak = bk,

the likelihood is simply given by the probability density Ljk = φj(h
−1(ak))|h′(h−1(ak))|.

Then the mixture proportions π are estimated by maximizing the log-likelihood:

l(π) =
∑
j

log

(∑
k

πkLjk

)
, (6)

π̂ = arg max
π

l(π). (7)

This can be done using the same methods as in the normal case [3].

The integral of φj(θj)|h′(θj)| in (5) does not necessarily have analytical form.

However, if the link function is identity link h(x) = x, we have

Ljk =
Φj(bk)− Φj(ak)

bk − ak
, (8)
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where Φj(x) :=
∫ x
−∞ φj(y)dy.

Now we define ψj as the density of the distribution proportional to φj(x)|h′(x)|:

ψj(x) :=
φj(x)|h′(x)|∫∞

−∞ φj(x)|h′(x)|dx
, (9)

and Ψ(x) :=
∫ x
−∞ ψj(y)dy is the corresponding cdf.

If φj(·; θ) belongs to the exponential family and h is its natural link, ψj(x) would

be a distribution in the conjugate distribution family of φj, and its cdf can be used

to compute the integral in (5). Some examples are illustrated in Section 1.2.4.

In practice, ψj(·) and Ψj(·) should be provided to compute the likelihood matrix

L in order to fit the prior distribution. Otherwise, we can use numerical integral to

calculate (5), but the computational stability might not be guaranteed.

1.2.3 Posterior distribution p(θj|Yj, π̂)

For any distribution (density) f(x), we denote f trunc(x; a, b) as its truncated dis-

tribution on interval [a, b]:

f trunc(x; a, b) :=
f(x)∫ b

a
f(y)dy

, (10)

and denote M f (a, b) as the mean of f trunc(x; a, b):

M f (a, b) :=

∫ ∞
−∞

xf trunc(x; a, b)dx. (11)
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For the corner case a = b, f trunc(x; a, a) := δa which is the point mass on a, and

M f (a, a) = a.

The posterior distribution of θj given observation Yj and fitted prior mixture

proportions π̂ is given by:

p(θj|Yj, π̂) =
p(Yj|θj)p(θj)∫
p(Yj|θj)p(θj)dθj

(12)

=
φj(θj)g(h(θj))|h′(θj)|∑

k π̂kLjk
(13)

=
∑
k

π̃jkψ
trunc
j (θj; ãk, b̃k), (14)

where:

ψj(x) =
φj(x)|h′(x)|∫∞

−∞ φj(x)|h′(x)|dx
, (15)

π̃jk =
π̂kLjk∑
k′ π̂k′Ljk′

, (16)

ãk = h−1(ak), (17)

b̃k = h−1(bk). (18)

In other words, the posterior distribution of θj is a mixture of truncated ψj

distribution, truncated on (ãk, b̃k), with mixture proportions π̃jk:

θj|Yj, π̂ ∼
K∑
k=1

Z̃jkψ
trunc
j (θj; ãk, b̃k), (19)

where (Z̃j1, ..., Z̃jK) are latent binary indicators for mixture components, following
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multinomial distribution with n = 1 and probability P (Z̃jk = 1) = π̃jk.

Following the posterior distribution, we can calculate other quantities to estimate

or test θj:

• Posterior mean:

E(θj|Yj, π̂) =
∑
k

π̃kM
ψj(ãk, b̃k), (20)

which can be used as a shrinkage estimator for θj.

• Local false discovery rate (lfdr): if the prior includes a mixture component

corresponding to the null hypothesis θj = 0, i.e. h−1(ak) = h−1(bk) = 0, then

lfdr for θj is given by

lfdrj = P (θj = 0|Yj, π̂), (21)

which is the posterior mixture proportion for that null component.

• Local false sign rate (lfsr) as defined in [3]:

lfsrj = P (θj = 0|Yj, π̂) + min(P (θj > 0|Yj, π̂), P (θj < 0|Yj, π̂)), (22)

where

P (θj < 0|Yj, π̂) =
∑
k

π̃kΨj(0)

Ψj(b̃k)−Ψj(ãk)
, (23)

and P (θj > 0|Yj, π̂) = 1− P (θj = 0|Yj, π̂)− P (θj < 0|Yj, π̂).
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1.2.4 Estimate unknown mode

In previous sections we assume that for the unimodal prior g, the uniform mixture

components {ak, bk} are fixed. However in some cases, the mode is unknown and we

would like to estimate the prior using the empirical Bayes method:

ĝ = arg max
g unimodal

l(g), (24)

hence ĝ optimizes the log-likelihood.

In practice, we solve this optimization problem as follows: for each given mode

c, we construct a grid {ak, bk} which is anchored at mode c and covers a sufficient

wide range, and estimate the mixture proportions π̂ which achieves the maximum

log-likelihood (denote by lc). Thereby, lc itself is a function of the mode c. We use the

numerical optimization function stats::optimize in R to search for the optimizer

ĉ = arg maxc lc.

1.2.5 Special cases

Table 1 lists some special cases of general ash, where the likelihood φj is a com-

monly used distribution. We will discuss fash, Poisson ash and Binomial ash in detail

in Section 1.3. Here we define the non-standard log-F distribution logF (·;µ, ν1, ν2)

as follows: if for a random variable X, we have exp(X − µ) ∼ F (ν1, ν2), then we say

X follows the distribution logF (X;µ, ν1, ν2).
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1.3 Applications

1.3.1 Adaptive shrinkage of F statistics (fash)

A special case for the ash methods with general likelihood would be the adaptive

shrinkage of F statistics. F statistics are normally used for testing equality of two

variances, or multiple-comparison ANOVA problems. In genomic contexts, pooling

information across genes may help improve the statistical power of gene-specific F

tests. Smyth [2] suggested using the moderated error variance estimates to adjust

F statistics, assuming that the gene-specific variances come from a common inverse-

gamma prior. Nevertheless, we can directly work on the gene-specific F-statistics

and fit their prior more adaptively by a unimodal distribution.

Suppose we have the expression matrix Y for G genes and N samples from M(>=

2) conditions. Consider the following two problems related to F test: variability

comparison and variance decompositions.

Variability comparison Suppose we would like to compare the expression vari-

ability within condition A and the variability within condition B. The statistical

Table 1: Special cases of general ash

Model Posterior

Case φj h(x) ψj ãk b̃k
ash N(Yj; θj, s

2
j) x N(θj;Yj, s

2
j) ak bk

fash logF (Yj; θj, ν1, ν2) x logF (θj;Yj, ν2, ν1) ak bk
Poisson ash Poisson(Yj; cjθj) x Gamma(θj;Yj + 1, cj) ak bk
Poisson ash Poisson(Yj; cjθj) log(x) Gamma(θj;Yj, cj) eak ebk

Binomial ash Bin(Yj;nj, θj) x Beta(θj;Yj + 1, nj − Yj + 1) ak bk
Binomial ash Bin(Yj;nj, θj) logit(x) Beta(θj;Yj, nj − Yj) 1

1+e−ak

1
1+e−bk
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model is defined by:

Ygi = µg + βg,c(i) + egi, (25)

egi ∼ N(0, σ2
g,c(i)), (26)

where g is the index for gene, i is the index for samples and c(i) is the condition

indicator, either A or B. Suppose there are NA and NB samples in group A and B

respectively. All observations are independent with each other.

A straightforward way to estimate the true variance ratio
σ2
gA

σ2
gB

(denoted by αg) is

using the ratio of sample variances
σ̂2
gA

σ̂2
gB

(denoted by Fg). Its sampling distribution is

given by

Fg ∼ αg × F, (27)

where F is a F-distributed random variable with degrees of freedom NA−1 and NB−

1. Let the null hypothesis be: the two conditions have same expression variability

(H0 : σgA = σgB), then under the null αg = 1.

Transforming (26), we have

log(Fg)− log(αg)| log(αg) ∼ logF, (28)

where logF is the logarithm of F-distributed random variable with d.f. NA − 1 and

NB − 1. Note that (27) meets the form of general ash problem, where log(αg) is our

parameters of interest with log-F likelihood.

Analogous to (1), assuming log(αg) come from a common unimodal prior, the
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general ash framework can be further used to improve estimates of log(αg). Ac-

cording to Table 1, the posterior distribution of log(αg) is given by a mixture of

truncated logF (·; log(Fg), NB − 1, NA − 1) distribution (with different truncation

limits for different mixture components). By pooling information across genes, the

posterior estimates of log(αg) are presumably more accurate than the raw noisy

estimates log(Fg).

Variance decomposition Suppose we would like to compare the expression vari-

ability explained by conditions to the variability due to noise (or the total variability).

The statistical model is defined by:

Ygi = µg + βg,c(i) + egi, (29)

egi ∼ N(0, σ2
ge), (30)

βg,c(i) ∼ N(0, σ2
gc), (31)

where c(i) is the condition level of sample i, βg,c(i) is the random condition effect.

Suppose the design is balanced so we have equal number of samples for each condition

(M conditions in total).

Our goal is to compare σ2
gc (variance of condition effect) against σ2

ge (variance

among replicates). The ANOVA F-statistic Fg can be used for variance decomposi-
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tion, and its sampling distribution is given by

Fg =
SSTg/(M − 1)

SSEg/(N −M)
(32)

=
(
∑

i(Ȳg,c(i) − Ȳg)2)/(M − 1)

(
∑

i(Yg,c(i) − Ȳg,c(i))2)/(N −M)
(33)

∼ (1 +Mσ2
gc/σ

2
ge)× F (34)

∼ αg × F (αg := 1 +Mσ2
gc/σ

2
ge) (35)

where F is a F-distributed random variable with d.f M − 1 and N −M , Ȳg,c(i) is the

condition c(i)’s expression mean (average of all Yg,c(i)’s with condition c(i)), and Ȳg

is the overall expression mean for gene g. Let the null hypothesis be: there are no

condition effects (H0 : σgc = 0), then under the null αg = 1.

Similarly, we can use the general ash framework to fit a unimodal prior for log(αg)

and use posterior means to estimate log(αg). Then the ratio of condition variance

and error variance σ2
gc/σ

2
ge can be estimated by transforming the estimate of log(αg).

Table 1 shows the analytical form of the posterior of log(αg): a mixture of trun-

cated logF (·; log(Fg),M − 1, N −M) distribution (with different truncation limits

for different mixture components).

Note that this method can only apply to balanced dataset with equal number of

samples for each condition, since (33) does not hold for unbalanced dataset.

Example: variance decomposition for stem cell expression data We have

the microarray gene expression data from Burrows et al. [1]. The dataset has four

individuals. Each individual has four samples types - Fibroblast, LCL, F-iPSC, L-

11



iPSC, where L-iPSC refers to iPSCs derived from LCLs, F-iPSC refers to iPSCs

derived from Fibroblasts. The L-iPSC type has three replicates A, B and C, and the

other three types only have one replicate, so there are 6 samples for each individual.

Burrows et al. [1] were interested in the proportion of expression variance ex-

plained by cell type of origin versus that explained by individual in the iPSCs. They

performed a linear mixed model with a fixed effect for cell type of origin (i.e. L-iPSC

vs F-iPSC) and a random effect for individual. This model did no use the LCLs or

the Fibroblasts from these individuals.

We use the naive ANOVA F-test and fash to analyze the proportion of variation

explained by cell-type or individual. Specifically, we assume that gene expression

ygij comes from the following model:

ygij = µg + βgi + γgj + egij, (36)

where g, i, j are the indices for gene, individual and cell type respectively. β and γ are

random effects for individuals and cell-types respectively. Suppose βgi ∼ N(0, v
(ind)
g ),

γgj ∼ N(0, v
(ct)
g ) and egij ∼ N(0, v

(err)
g ), we are interested in estimating the “PVE”

(proportion of variance explained) by individual or cell-type defined as follows:

PVE(ind)
g :=

v
(ind)
g

v
(ind)
g + v

(ct)
g + v

(err)
g

, (37)

PVE(ct)
g :=

v
(ct)
g

v
(ind)
g + v

(ct)
g + v

(err)
g

. (38)

Note that this dataset has unbalanced design (three L-iPSC replicates but just
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one F-iPSC sample for each individual), and it is infeasible to use fash on unbalanced

dataset for PVE analysis as we discussed before. Hence we choose an ad-hoc way:

each time we simply use one of the three L-iPSC replicates to form a balanced

dataset, and compare the results of three trials. Fortunately the three trials give

very similar results. Figure 1 shows the posterior mean of gene-specific PVEs of

cell-type or individual estimated by F-test and fash for the subsets using each of the

L-iPSC replicate.
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Figure 1: Gene-specific PVE estimates of cell-type (CT) or individual (IND), esti-
mated by F-test and fash on Burrows data. Each time we only use one of the three
L-iPSC replicates to form a balanced dataset.

Burrows et al. [1] performed the limma DE analysis for each pair of cell types and

found that INPP5F is the most common DE gene. They also used simple ANOVA

R2 to record the variance explained by cell-types or individuals. The ANOVA R2 is

defined as R2 := SST/(SST+SSE), where SST and SSE are the same as in (31). Note

that R2 is different from our defined “PVE” in (37). They conclude that “individual

genetic background captures a much larger proportion of gene regulatory variation

than cell type of origin”.
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The fash results are generally consistent with Burrows et al. [1]: all genes have al-

most zero PVE for cell-types, except for gene INPP5F (ENSG00000198825). Com-

pared to the raw F-test PVE estimates (which are substantially noisy), fash tends

to shrink them towards 0.

1.3.2 Adaptive shrinkage on binomial data (Binomial ash)

Table 1 gives us the analytical forms of Binomial ash, where we have binomial

observations Yj ∼ Binomial(nj, pj) (j = 1, ..., J) and nj’s are known. The unknown

success probability parameter pj is of our interest. Binomial ash allows us to borrow

information across the observations and use the posterior distribution to estimate pj.

Example: comparison between bulk RNA-seq and scRNA-seq data In

recent years, single cell RNA-seq (scRNA-seq) methods have been more and more

frequently used in gene expression analysis. While bulk RNA-seq data mostly ex-

tract gene expression features from millions of cells which have been pooled together,

scRNA-seq can capture expression profile of individual cells. The scRNA-seq tech-

nologies would allow us to fetch more information about the heterogeneity of gene

expression across cells. The comparison between bulk RNA-seq and scRNA-seq could

thus be interesting. If we have both scRNA-seq data and corresponding bulk RNA-

seq data on the same sample, we might want to quantify the concordance as well

as difference between them. Presumably, the difference between bulk RNA-seq and

scRNA-seq data may rise from various possible sources: effects due to the dynamics

of cell transcription, technical differences in sequencing protocols, etc. Hence, in-

vestigating the genes with significant difference might help us better understand the

14



biological mechanism of certain genes as well as the underlying technical features of

scRNA-seq data.

Suppose we have both scRNA-seq and bulk RNA-seq data on the same sample.

Let Xs
jg denote the observed counts of gene g in single cell j. And let Xb

g denote the

counts of gene g in the bulk. We first pool the single cell data into a single count,

and define Xs
g :=

∑
j X

s
jg. Now we might want to identify the genes that show the

most “significant” deviations between Xb
g and Xs

g , and quantify those deviations.

Suppose the bulk and single cell data are independent, then:

Xb
g |Cg ∼ Binomial(Cg, pg), (39)

where Cg := Xb
g + Xs

g is the total count, pg is the fraction of all reads that come

from bulk at gene g. If the single cell data and bulk data are generally concordant,

then the bulk RNA-seq expression level should be roughly proportional to scRNA-

seq expression level (the ratio relies on sequencing depths). As a result, condition

on the total counts Cg, the bulk fraction pg is supposedly similar across genes. The

“outlier” genes where pg is particularly small or large might be suspicious.

Note that the gene-specific sample bulk fraction p̂g := Xb
g/Cg is the raw maximum

likelihood estimate (MLE) of pg. We also use the binomial ash to estimate pg,

assuming that pg comes from a unimodal prior with some unknown mode (to be

estimated). The posterior mean of pg (denoted by p̃g) is thus a shrinkage estimator

of pg, borrowing information across genes. The prior as well as its mode are estimated

by the empirical Bayes approach, which makes them adaptive to data.

Tung et al. [4] provide both scRNA-seq and bulk RNA-seq data for same samples
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Histogram of MLE and ash posterior mean for p
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Figure 2: Distribution of sample bulk reads fraction p̂g = Xb
g/Cg and Binomial ash

posterior estimates on Tung data (NA19091.r1). The red line is the ash fitted prior
of pg.

Figure 3: Binomial ash posterior estimates p̃g versus the ML estimates p̂g on Tung
data (NA19091.r1).
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(three individuals and three replicates for each individual). We compare the single

cell and bulk data for one replicate NA19091.r1. Genes with both non-zero Xb
g and

non-zero Xs
g are selected for our analysis.

Figure 2 shows the distribution of sample bulk reads fraction p̂g = Xb
g/Cg and the

binomial ash posterior estimates p̃g. Although most sample fractions p̂g are over 0.6,

there are some extremely small outliers around 0. The binomial ash fitted prior is

unimodal with mode around 0.8, and the left tail keeps flat from 0 to near 0.5. Figure

3 plots the posterior estimates p̃g from binomial ash versus the sample fraction p̂g.

Both figures show that on the left side, quite a few small p̂g’s are pushed higher by

binomial ash. These genes are further examined and turn out to be low expressed

genes, and their bulk reads fractions are highly variable due to the small total count

Cg. Thereby, binomial ash shrinks these posterior means towards the prior mean,

after accounting for the lack of informativeness in low expressed genes.

Table 2 lists the genes where the posterior bulk fraction p̃g is extremely small

or large. We might want to further inspect these genes to investigate the cause of

difference between bulk RNA-seq and scRNA-seq expression.

Table 2: Genes with extremely small or large p̃g on Tung data (NA19091.r1).

Gene name Ensemble ID Xs
g Xb

g p̃g
TSHZ2 ENSG00000182463 64 1 0.030
HIST1H4L ENSG00000198558 144 4 0.033
MTRNR2L6 ENSG00000270672 433 16 0.038
BCKDHA ENSG00000248098 23 1547 0.985
RAB19 ENSG00000146955 3 241 0.978
TUBB3 ENSG00000258947 110 4264 0.975
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1.3.3 Poisson data

Table 1 provides us the analytical forms of Poisson ash, where we have Poisson

observations Yj ∼ Poisson(cjλj) (j = 1, ..., J) and cj’s are known scaling factors. The

unknown intensity parameter λj is of our interest. Poisson ash allows us to borrow

information across the observations and use the posterior distribution to estimate

λj.

Example While normal distribution based models have been widely used on clas-

sical gene expression data (microarray, bulk RNA-seq), they have non-negligible lim-

itations when handling single cell RNA-seq data, which typically have zero inflation

and low count level issues. Thereby count distribution based models are generally

preferred for scRNA-seq analysis. In next Chapter, we will discuss the usage of

Poisson ash on scRNA-seq data and compare with some existing methods.

18



References

[1] Burrows, C. K., N. E. Banovich, B. J. Pavlovic, K. Patterson, I. G. Romero, J. K.

Pritchard, and Y. Gilad (2016). Genetic variation, not cell type of origin, underlies

the majority of identifiable regulatory differences in ipscs. PLoS genetics 12 (1),

e1005793. 11, 13

[2] Smyth, G. K. (2004). Linear models and empirical bayes methods for assess-

ing differential expression in microarray experiments. Statistical Applications in

Genetics and Molecular Biology 3 (1), 3. 7

[3] Stephens, M. (2016). False discovery rates: a new deal. Biostatistics , kxw041. 2,

3, 6

[4] Tung, P.-Y., J. D. Blischak, C. J. Hsiao, D. A. Knowles, J. E. Burnett, J. K.

Pritchard, and Y. Gilad (2017). Batch effects and the effective design of single-cell

gene expression studies. Scientific reports 7, 39921. 15

19


	General adaptive shrinkage
	Introduction
	Methods
	Models
	Estimate prior distribution g
	Posterior distribution p(j|Yj, )
	Special cases

	Applications
	Adaptive shrinkage of F statistics (fash)
	Adaptive shrinkage on binomial data (Binomial ash)
	Poisson data



